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ABSTRACT 
 

This article employs higher order spectral finite elements to model seismic wave 

propagation and fault dislocation phenomena in two dimensional elastic media. This study 

presents two main phases comprising wave propagation and fault dislocation, respectively. 

In the first phase, accuracy and dispersion assessments are performed to indicate capability 

of these elements in such problems, revealing suitable polynomial orders which should be 

utilized for obtaining better accuracy of wave propagation. In the second phase, the split 

node technique is developed in terms of spectral finite element method in order to simulate 

both static and dynamic fault dislocations. The split node technique was originally presented 

for static dislocation using finite element method, whereas it is herein developed to both 

static and dynamic dislocations using spectral finite element method. Also, the dislocations 

are modeled in layered half space to incorporate more realistic analyses. Several numerical 

simulations are provided to demonstrate accuracy and ability of spectral finite elements for 

modeling of wave propagation and fault dynamics. 

 

Keywords: Wave propagation; fault dislocation; spectral finite element method (SFEM); 

split node technique (SNT); layered half space; accuracy assessment. 

 

 

1. INTRODUCTION 
 

Wave propagation phenomenon has been investigated in many fields including ocean waves, 

seismic waves, electromagnetic waves, sound waves and so on. These phenomena are 

expressed as partial deferential equations which may have either analytical or numerical 

solutions. However, analytical solutions only exist for the simple equations under specific 

initial and boundary conditions. Therefore, although there are problems without successful 
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numerical solutions, numerical analysis is of great importance for researchers as they can 

solve more complex and real-life problems with the least possible limitations. Meanwhile, 

computational earthquake engineering [1] plays substantial role in applied mathematical 

modeling of an earthquake. An important issue existing in earthquake engineering is ground 

response analysis due to seismic waves and earthquake faulting. Earthquake-induced 

damages of engineering structures are unavoidable, thus for defining and predicting potential 

seismic loading of a structure, particularly for vital structures, one should calculate site 

effects including wave propagation, fault movements and soil-structure interaction. Many 

numerical methods have been applied to wave simulation such as finite difference method 

(FDM) [2], finite volume method (FVM) [3], finite element method (FEM) [4], boundary 

element method (BEM) [5], decoupled equation method (DEM) [6, 7], spectral finite 

element method (SFEM) [8, 9] and physics-based methods [10] among others. 

 Spectral methods was originally proposed by Patera [11] in computational fluid 

dynamics, these methods were combined with finite element procedures to overcome 

complex geometries, apart from their desirable accuracy on dynamic analysis. Nowadays, 

SFEM is one of the most popular numerical tools for simulation of wave propagation. 

Komatitsch et al. [8, 9] proposed the SFEM for seismic wave propagation and solved wave 

equations with large-scale domains. Khaji et al. [12-14] employed the SFEM for 

elastodynamic problems and damage detection. Khaji and Zakian [15] developed an efficient 

stochastic SFEM for uncertainty quantification in elastodynamics. Also, different versions 

of the SFEM were applied to wave propagation [16-21]: the spectral method, the spectral 

element method, and the spectral finite element method. It is sometimes hard to find out 

whether or not a method belongs to one of these kinds [4], and their terminologies are 

sometimes applied interchangeably as well. Nevertheless, in all cases higher-order 

polynomials or harmonic functions are usually utilized in the solution space. Since harmonic 

functions are employed as basis functions and the solutions of wave equations are inherently 

harmonic functions, the spectral method leads to numerical solutions near to exact solutions. 

Moreover, some cases mainly deal with frequency domain solutions and are sometimes 

considered for special problems. 

On the other hand, fault dislocation and faulting-induced wave propagation have 

extensively been performed in the literature. One of the well-known method developed by 

Melsoh and Raefsky [22, 23] is split node technique (SNT) which was added to the FEM for 

dislocation modeling without explicit implementation of discontinuities. Even though 

extended finite element method has recently been applied to earthquake fault modeling [24], 

SNT-FEM is still a robust and popular approach for these models due to its simplicity, 

efficiency and minimal limitations as discussed in [25]. 

In this paper, wave propagation and fault dislocation phenomena will be pursued. The 

SFEM is used to model these problems and in the case of fault dislocation, static and 

dynamic dislocations are developed together with the SFEM and the SNT. Accuracy of the 

SFEM is evaluated for various benchmark examples which illustrate abilities of the 

proposed SNT-SFEM approach. This is the first combination of the SNT and the SFEM in 

both static and dynamic statuses. Furthermore, two benchmark examples are considered for 

wave propagation to investigate parametric aspects of higher order SFEM in such problems. 
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2. SPECTRAL FINITE ELEMENTS FOR WAVE PROPAGATION 
 

The SFEM is a numerical method collecting features of spectral methods and standard FEM. 

The SFEM contains approximating polynomials within spectral methods and the spatial 

discretizing scheme of the FEM. This combination leads to fast convergence of solutions 

while accuracy of them is enhanced. These features eliminates the restrictions regarding the 

domain geometry, with significantly lower requirements about numbers of element used in a 

discretization. Lobatto, Chebyshev, and Laguerre polynomials are usually utilized as 

approximating polynomials in the SFEM. These polynomials are defined to form a system 

of non-uniformly distributed nodes whose locations correspond to zeroes of certain 

polynomials. Thus, the main differences between the FEM and the SFEM may be 

considered in their interpolation functions and quadrature schemes. Here, Lobatto 

polynomial and Gauss-Lobatto-Legendre (GLL) are selected as interpolation function and 

quadrature scheme, respectively. The remaining properties of a SFEM analysis are similar to 

a standard FEM analysis. 

In a spectral finite element, a set of local interpolation functions is defined. Firstly, the 

degree ln of the Legendre polynomials has to be selected [15]. Local nodes ( 1ln ) of an 

spectral element are obtained as the roots of the following equation 

 

 0)()1( 1

2   rPr
ln  (1) 

 

where )(rPn
  expresses the first derivative of the Legendre polynomial of degree n defined 

as a recursive relation of 
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for which, the following Rodrigues relation implies that 
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As an algebraic representation, the kth derivative of Lobatto polynomial gives 
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The local nodes are also named as the GLL points. The Lagrange interpolating 

polynomials of order 
ln  pass through the GLL points. Therefore, a 2D quadrilateral spectral 

element has )1)(1(  ll nn nodes. Theoretical analyses show that high interpolation 

accuracy is achieved in this manner. A famous benefit of Lobatto polynomial followed by 
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the GLL quadrature is diagonal mass matrix in dynamic analysis.  

For elastic wave propagation, the following equation governs 

 

  in)( fuu    (5) 

 

where uu,,,  , and f  denote mass density, stress tensor, acceleration, displacement and 

body force, respectively. Boundary conditions are imposed as follows  

Dirichlet (essential) boundary: 
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and Neumann (natural) boundary: 
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such that 
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and n  is the unit normal vector. Weak form of Eq. (5) with a test function like w gives 
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while the test function belongs to 

 

 }on0,)]([)({)( 11

0 D

nd wHxwH   (10) 

 

in which )(1 H  and nd show Sobolev space and number of dimension, respectively. But 

in the case of dynamic analysis, the test function belongs to 
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with I being interval of time variations. Finite dimensional subspace )(
~

0  hH , so that 
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For a 2D domain, the domain is discretized by ne elements considering 
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Galerkin approach takes the local test function as element interpolation function H, that 

is 
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Hence, element matrices are obtained by 
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where Cεζ  , Buε  , 
ek , 

em , 
e

bf , 
e

tf and t represent stress-strain, strain-displacement 

relationships, stiffness matrix, mass matrix, body force vector, traction force vector and 

element thickness, respectively. After assembling element matrices and adding concentrated 

load vector, the following equation of motion is derived as 

 

 FKuuM   (19) 

 

in which ctb fffF 
 and a suitable time integration scheme must be employed to 

solve Eq.(19). Explicit central difference is a suitable one exploiting the diagonal mass 

matrix. The time step of the dynamic analysis may be taken as 
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LC

dydx
dt

),min(
CFLmax  (20) 

 

where dx  and dy  indicate distance of two nearest adjacent nodes at the x and y directions, 

respectively; and 
LC  is velocity of the fastest wave in the domain which is usually 

interpreted as P (or longitudinal) wave. In addition, maxCFL implies the maximum CFL 

(Courant-Friedrichs-Lewy) number depending on the largest period and integration scheme. 

maxCFL  has been suggested to be less than 0.6 and a value equal to 0.4 may be chosen for 

considering margin of safety [8, 9].  

 

 

3. SPECTRAL FINITE ELEMENTS FOR FAULT DISLOCATION 
 

In this section, the SNT is developed for dynamic analysis of spectral finite element models 

having fault. For complex domains, the problem may not be solved by analytical methods. 

In this situation, a suitable numerical method is an alternative to solve the problem. The 

FEM is an appropriate choice for analysis of dislocation when is enriched by the SNT. In the 

SNT, the FEM or SFEM mesh is constructed to be compatible with the fault (i.e., the 

dislocation coincides with finite element edges). Elegance and efficiency are what make the 

SNT popular and desirable. For example, global stiffness matrix is preserved unchanged, but 

the fault’s effects are appeared as force vector. Additionally, we prove that mass matrix will 

also preserved unchanged in dynamic form of the SNT. In the first step of implementing the 

SNT into the SFEM, one should determine the elements whose nodes are connected to the 

fault that are contributing elements, and the nodes are known as split nodes, and this is why 

they call the method SNT. 

 

 
Figure 1. A body consisting of a fault as intersection of contributing elements 

 

Assume a body like Fig. 1 within a fault such that the contributing elements have 

intersection with the fault at two sides denoted by + (hereafter right side) and – (hereafter 

left side) sign conventions. Now, one can write equation of motion for each side’s 

contributing element, but two adjacent ones, as follows 

For a right contributing element: 

 

Ω 
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For a left contributing element: 
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The matrices imparted to the split nodes a and non-split nodes b of an element. f  is an 

internal boundary or fault domain. Displacement of each element can be divided to two 

parts: average and dislocation values as below 

 

 
.

,









eee

eee

uuu

uuu
 (23) 

 

In which 
  ee

uu  for two adjacent contributing elements in opposite sides, but 
  ee uu  stands for the imposed dislocation part of these adjacent elements. The main 

point is their opposite signs, therefore, slip of the right element may have positive values and 

slip of the left one may have negative values, and vice versa. Pre-defined slip magnitude s is 

imposed as follows 
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where )(tu f  is a normalized dislocation history function of the fault such as one suggested 

by Haskell [26] that is shown in Fig. 2. Also   is counterclockwise direction angle of the 

fault with respect to horizontal line. 
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Figure 2. A fault dislocation function 
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and 
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Afterwards, we arrive at the following forms 
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and 
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Clearly, fictitious element force vectors are generated due to the dislocation in terms of 

element mass and stiffness matrices as derived at right hand side of above equation. These 

force vectors are hereafter called dislocation force vector 
e

df  of an element (a contributing 

element) as below 
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and 
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which finally rearranges Eq. (19) as 
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in which dF  illustrates global dislocation vector attained by local dislocation forces in 

Eqs. (29) and (30). In the static dislocation and in the dynamic dislocation whenever

0)( tu f
 , inertial term of dislocation force is eliminated, and hence Eqs. (29) and (30) are 

degenerated to a dynamic form, that is 
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However, we obviously take 1)( tu f  in a static analysis. Consequently, one can form 

element-wise dislocation vectors, and then utilize any dislocation history function for 

dynamic analysis of fault dislocation.  

 

 

4. NUMERICAL SIMULATIONS 
 

This part presents four numerical simulations using previously mentioned approaches. The 

first two ones are devoted to benchmark wave scattering problems solved due to Refs. [4, 

27]. The remaining ones are two new examples for the proposed SNT-SFEM approach in 

order to solve fault dislocation in a double layer elastic half space using static and dynamic 

analyses. All the examples, except for the example 3 which involves a static analysis, are 

temporally integrated with explicit central difference scheme [28] to utilize the 

advantageous of diagonal mass matrices. Also, plane strain condition is applied to all the 

examples. Structured meshes are defined for the examples 1 and 2, while unstructured 

meshes are considered for the examples 3 and 4. For the unstructured meshes, a suitable 

ordering algorithm is implemented in order to have a minimal or sub-minimal bandwidth for 

the matrices. These simulations are entirely programmed in MATLAB. 
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4.1 Wave propagation in a semi-infinite elastic domain 

This problem is also known as a Lamb problem [4] for which domain of this problem is 

described in Fig. 3. Here, the P-wave velocity, the S-wave velocity and the Rayleigh wave 

velocity are considered as 3200 m/sec, 1848 m/sec, and 1671 m/sec. The time duration of 

dynamic analysis is taken as 0.999 sec, such that the P-wave cannot reach the outer 

boundaries, and hence no absorbing boundary condition is applied. Higher order spectral 

elements with polynomial degrees of 3, 5, 6 and 8 with 160×80, 96×48, 80×40 and 60×30 

meshes are employed, respectively. Therefore, their matrices have the same degrees of 

freedom providing a fair comparative situation. Two receivers are placed at the surface 

boundary with distance of 640 m and 1280 m from the loading place, that is a Ricker 

wavelet line force as below 

 

 0)),(exp())(21(10),0,0( 0

222

0

226  tttfttftyxF   (34) 

 

with central frequency Hz5.12f  and 1.00 t . Surface displacement recorded by the 

receivers are depicted in Fig. 4 showing accuracy of 8th order elements, while 3rd and 5th 

order elements reveal some spurious oscillation impairing solutions. Also, 6th order element 

can compete against 8th order with much less errors with respect to the lower order elements. 

Displacement fields at x and y directions, and Von Mises stresses at t=0.982 sec are 

computed and illustrated in Fig. 5, for the 8th order element which is the most accurate one 

among others considering identical degrees of freedom. 

 

 
Figure 3. Semi-infinite elastic domain: the prescribed force is placed at the center of surface; 

R640 and R1280 positions denote receivers’ locations at the free surface boundary 

 

F(0, 0, t ) 

R640 R1280 

6400 m 

3200 m 
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4.2 A 2D scalar wave propagation 

The scalar wave equation with a Ricker wavelet source at the center of a two-dimensional 

domain, as per Ref. [27], is given as follows 
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and 
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(a) (b) 

  
(c) (d) 

Figure 4. Displacements detected at receivers locations of the free surface boundary: (a) 

horizontal displacement at R640, (b) vertical displacement at R640, (c) horizontal displacement 

at R1280, and (d) vertical displacement at R1280 
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where the wave velocity is 1c ; central frequency is Hz6f ; 25.00 t ; and u is the 

displacement solution sought. A quarter of the domain [0,1]×[0,1] is analyzed for sake of 

symmetry. Although absorbing boundary conditions should generally be prescribed at the 

outer boundary, no absorbing boundary conditions are herein used because for the time 

duration considered 0.95 sec, the wave does not reach this boundary as same as the previous 

example. Two meshes 32×32 and 48×48 with polynomial order of 3, and two meshes 12×12 

and 18×18 with polynomial order of 8 are generated for this problem which arises the same 

degrees of freedom for better comparison. Here, 3rd order element has better performance in 

this problem. However, displacement variations along the x-axis, Fig. 6, and displacement 

contours, Fig. 7, admit this fact by exhibiting spurious oscillations for different meshes. 

 

 
(a) 

 
(b) 
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(c) 

Figure 5. Response fields: (a) horizontal displacement, (b) vertical displacement, and (c) Von 

Mises stress 
 

 
Figure 6. Displacement variations along the x-axis at t=0.95 

 

4.3 Static dislocation of a fault in a layered half space 

A double layer elastic half space is indicated in Fig. 8 consisting of an inclined embedded 

fault shown by red line with 45 degree slope. The fault passes through each layer so that the 

center of the fault is located at intersection of these layers. Length and slip of the fault are 

equal to 2800 m and 0.8 m, respectively. Layer 1 and layer 2 have different material 

properties as illustrated. Two unstructured meshes are considered for this problem as 



P. Zakian and N. Khaji 1202 

depicted in Fig. 8, the first one consists of 2279 elements, while the second one constitutes 

3461 elements. These spectral elements are constructed by the 3rd order polynomial. The 

main weakness of the SNT is its requirement for mesh alignment around the fault, but this 

weakness is negligible due to the advantages of the SNT. Here, the meshes 1 and 2 use 10 

and 20 segments for discretization of the fault, respectively. Surface displacement responses 

of the domain at x and y directions are compared and illustrated in Fig 9. Also, displacement 

fields of the domain under the fault dislocation at x and y directions are depicted in Figs. 10 

and 11. These figures demonstrate that two meshes give the same trend for responses, 

indeed, the main and important difference is visible in response values as usual. 

 

  
(a) (b) 

  

(c) (d) 
Figure 7. Displacement contours at t=0.95: (a) mesh 32×32 with order 3, (b) mesh 48×48 with 

order 3, (c) mesh 12×12 with order 8, and (d) mesh 18×18 with order 8 
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(a) 

 
(b) 

 
(c) 

Figure 8. A double layer domain with a fault and its unstructured meshes: (a) geometry of 

domain, (b) mesh 1 with 2279 elements, (c) mesh 2 with 3461 elements 
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(a) 

 

 
(b) 

 

Figure 9. Surface response of the double layer domain under static dislocation: (a) horizontal 

displacements, and (b) vertical displacements. 
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(a) 

 
(b) 

Figure 10. Response fields due to static fault dislocation simulated by 2279 elements: (a) 

horizontal displacement, and (b) vertical displacement. 

 

 
(a) 
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(b) 

Figure 11. Response fields due to static fault dislocation simulated by 3461 elements: (a) 

horizontal displacement, and (b) vertical displacement 
 

 

4.4 Dynamic dislocation of a fault in a layered half space 

This example deals with a problem as same as the example 3, but dynamic form of the 

previous problem is under consideration here. Thus, a slip dislocation history function is 

defined as Fig. 2 with t0, t1 and s being 0.2 sec, 1 sec and 0.8 m, respectively. The remaining 

assumptions are identical to the example 3. Surface response histories of this domain at x 

and y directions are represented in Figs. 12 and 13. Larger number of elements along with 

finer discretization of the fault creates smoother and more accurate responses in comparison 

with smaller number of elements. Furthermore, displacement fields of the domain in two 

time instances at x and y directions are shown by Figs. 14 and 15, these time instances are 

taken as 0.5 sec and 1 sec, respectively. Faulting-induced wave propagation can be 

manifested from the results. It should be noted that absorbing boundaries are necessary to be 

implemented when the traveling waves can reach to boundaries. Nevertheless, absorbing 

boundaries are not considered here, because the wave cannot reach to boundaries until 1 sec. 

 

 

5. CONCLUDING REMARKS 
 

In this article, the higher order SFEM is utilized for wave propagation analysis and their 

accuracy and convergence are investigated. Essential formulations of the SFEM and the 

SNT-SFEM are presented for wave propagation and further applications in solids and 

structures. In simple problems, responses of various elements are close together, whereas 

spurious oscillations and low accuracy are visible in complicated wave problems 

considering identical degrees of freedom for different meshes composed of various 

polynomial orders. The numerical assessments show that higher order elements, like 6th and 

8th orders, give much better accuracy and minimal dispersion in complicated and large-scale 

wave problems. Also, the SNT is developed to dynamic and static dislocation simulation 
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using the SFEM demonstrating desirable accuracy of the SFEM for faulting-induced wave 

propagation even if distorted mesh is employed. Obviously, a dense mesh with fine part 

around a fault gives better solutions in sense of accuracy and convergence. Numerical 

simulations illustrate suitability, ability, accuracy, efficiency and flexibility of the SNT-

SFEM as same as the SFEM. 

 

 
(a) 

 

 
(b) 

Figure 12. Surface response of the double layer domain with mesh 1 under dynamic dislocation: 

(a) horizontal displacements, and (b) vertical displacements 
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(a) 

 

 
(b) 

 
Figure 13. Surface response of the double layer domain with mesh 2 under dynamic dislocation: 

(a) horizontal displacements, and (b) vertical displacements 
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 14. Response fields due to dynamic fault dislocation simulated by 2279 elements: (a) 

horizontal displacement at t=0.5 sec, (b) horizontal displacement at t=1 sec, (c) vertical 

displacement at t=0.5 sec, and (d) vertical displacement at t=1 sec 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 15. Response fields due to dynamic fault dislocation simulated by 3461 elements: (a) 

horizontal displacement at t=0.5 sec, (b) horizontal displacement at t=1 sec, (c) vertical 

displacement at t=0.5 sec, and (d) vertical displacement at t=1 sec 
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